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J. Phys.: Condens. Mmter 6 (1994) 81974203. Printed in the UK 

The oscillation structure of the Hall current in the presence of 
a contact surface 

G Ivanovski, D Jakimovski and E A Solov'evt 
Department of Natural Sciences and Ma~ematics. St Cyril and Methodius University. 
PO Box 162.91001 Skopje, Republic ofMacedonia 

Received 4 May 1994, in final form I I  J d y  I994 

Abstract. The behaviour of quasi-landau levels and the Hall current in the case of two magnetic 
media divided by a barrier at the contact surface is investigated. It is shown that the resonant 
underbarrier interaction between the quasi-landau states located in different magnetic media 
resuls in avoided crossings of the energy levels and in oscillation of the related Hall current. 

In previous papers [1,2] the energy-level distribition for a particle in a piecewise linear 
oscillator potential with a 8-function-type barrier has been studied. This situation appears 
for instance if the piecewise magnetic homogeneous film is placed in orthogonal uniform 
magnetic H and electric E fields. Here we consider the dependence of the quasi-Landau 
energy levels and Hall current on external fields as well as their space behaviour. 

As shown in figure 1 the medium where the particle is located consists of two films 
semi-infinite along the y axis with magnetic permeabilities pl and f i z  respectively, which 
are divided by a 8-function-type bmier on the contact surface at y = 0. The Schrodinger 
equation of the problem can be presented in the form 

[ ~ ( - i h V - e A i ) 2 + U ( z ) + a 6 ( y ) - e € - y  1 Y(x,y,z)=EV(x,y,z) (1) 

where V(z) is the potential well along the z axis, a is the strength of the 8 barrier, E(0, E, 0) 
is the uniform electric field, Ai is the vector potential in the first (i = 1, y > 0) and second 
(i = 2, y c 0) medium, and e and m are the charge and the mass of the particle respectively; 
the relationship between the vector potential and the magnetic induction is 

Bi =rotAi. (2) 

Magnetic induction Bi is connected with the strength of the uniform magnetic field H by 
the relation Bi = p i H .  The presence of 8-function-type barrier in the Schrodinger equation 
(1) can be replaced by the boundary condition 

w(x,+o,z)=~(x,'-o,z) 

[ a w ,  Y ,  z)/~YII,,+~ - [ awx ,  Y ,  Z)/~YII,=-~ = (2ma/f i2)v(x ,  0, z). (3) 

t Permanent address: Department of Theoretical Physics. Institute of Physics. St Petersburg University. 
St Petersburg 198904, Russia. 
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Figure 1. The m e p m  in which the charged panicle moves: PI and 111 are the magnetic 
permeabilities and Ho is the constant magnetic field. 

If the vector potential is chosen in the form Ai = (-air, 0,O) then the Schrijdinger 
equation (1) can be written as ( y  #0) 

[ - ( f i 2 / 2 m ) V 2 - ( i e h / m ) y 4 ~ / a x + ( e z ~ ~ / 2 m ) y z - e E y + U ( z ) ] Y ( x , y , z )  = EY(x, y , z ) .  

(4) 

The variables in (3) and (4) are separated, the solution Y(x,  y. z) being of the form 

~ ( x ,  y ,  z )  = e(i/h’xP~fa(z)co n ( Y )  (i = 1 , a  (5) 

where n and k are the quantum numbers of y and z one-dimensional problems respectively 
and Pz is the generalized momentum along the x axis. If the film has macroscopic size b 
along the x axis, for periodic boundary conditions the generalized momentum 

Px = ZzfiZ/b ( I  = 0, +I, 12 ,  . . .) (6) 

takes on the quasi-continuous series of values. We also assume that U ( z )  contains only the 
ground state (k = 0) to separate its spectrum from the spectrum under consideration. 

Thus, the non-trivial part of the problem is reduced to the one-dimensional Schrijdinger 
equation for ~ ( y )  

[-(hz/2m)d2/dy2 f (mw;/2)y2 - eEy + oiP,y -t- P:/2mlpn(y) = E , d y )  (7) 

where 
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Figure 2. The energy curves E, as functions of the generalized momentum P, at E = 0 
and 01/02 =. 3:  (a) II = 0; (b)  a = IO. All quantities are presented in atomic units: 
m = h = E  = 1. Bold lines indicate individual energy levels and the related Hall arrent IFi.  

and EO is the energy of the ground state in the short-range potential U ( z ) .  The general 
solutions of (7) in each region can be'expressed in terms of the function of a parabolic 
cylinder. The wave function of the problem is obtained by matching this 'solution at y = 0 
according to the boundary conditions (3). As a result we obtain a dispersion equation 121 

J73;Dp,(--41)Ifq2D,,(qz) - qJ2+l (42) }  - J;J;~p,(42)I~~1Dp,(-~1) + Dp,+1(-q1)1 
= d 2 m / f i 3 ) ' / 2 D p ,  (-qdD,,(qd (10) 

where qi = (2/moi3h)'Iz(e€ - wiPx),  pi = (2E, - 1)/2hwi and D,(q) is the function of 
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Figure 3. Two typical diaams: the potential along the y axis hos the shape of two parabolic 
wells, divided by a 6 h e r  at y = 0. 

a parabolic cylinder as defined in [3]. (10) determines the energy spectrum of a charged 
particle in orthogonal electric and magnetic fields in the presence of a barrier at the contact 
surface. The energy values depend on the following parameters: E ,  = E,(B,/Bz. U, Px, E).  
(10) has been employed to analyse the level spacing distribution for various values of both 
the 8-barrier factor (Y and of the ratio ol/y = BI/Bz, in the case E = 0, P, = 0 [l] as 
well as for arbitrary E,  Px 121. 

In quite a general case, one can assume that the media in the two regions have different 
dielectric constants. In such a case, obviously, a piecewise electric field also exists. So, 
one should write E, (i = 1,Z) instead of E. However, it may be easily shown that the net 
effect of the existence of this field is reflected only through the changes of the position of 
the parabolic wells in (7). 

The current density in an electromagnetic field is given by 



Hall current in presence of contact surface 8201 

19.54 

Figure 4. The avoided crossing of energy levels a.t 01 f m  = 3. E = 1 and two values of the 
banier Factor (I = IO and 100. 

ji = (iefi/Zm)(YVY' - Y*OV) - ( e 2 / m ) A i Y l *  

0.0 0.4 on 1.2 1 6 2.0 Px 

where Y* is the complex conjugate wave function. Since Ai = (-&y, 0, 0), the current 
has only an x component and the related density is 

= [(e/m)p, + eoi~lfo2(z)co;00. (11) 

The partial current along the x axis is obtained by integrating (11) in the orthogonal plane 
over y and z 

where d is the thickness of the film. 
Using the Cell-Mann-Feynman theorem 

(YJ~H/~AIY, , )  = aE./aA 

for the Schrodinger equation (1) with P, as the parameter A, expression (12) can be presented 
in the final form 

rf) = e(a/aPx)En(&. P,). (13) 

Figure 2 shows the results of numerical calculation of energy levels and Hall current as 
functions of generalized momentum P,, which is connected to the position of the parabolic 
wells in (7) by the relation 

(14) 2 yi = (e& - oiPz)/mw,. 

Since the wave function is located in the vicinity of the bottom of the potential well, figure 2 
gives us in fact the space distribution of partial currents If) with respect to quantum numbers 



8202 G Ivanovski et a1 

En,I:"'J (a) 

a0 1.0 2.0 30 Lb so i.0 7.0 E, E.0 

01 

- 2 o a t - 7  

-18.0-1 
OD 1.0 20 3.0 4.0 5.0 6,O 7.0 6 8.0 

01 

Figure 5. The energy c m e s  E, as a function of the electric field E at generalized momentum 
Px = 0 and W I / O Z  = 1: (0) OL = 0: (b) c1 = 10. All quantities are presented in atomic units: 
m = li = e  = I. Bold lines indicate individud energy levels and the related Hall cumm I?). 

I (see (6)). As one can see from figure 2(a) in the absence of a banier the curves E,(P,) are 
monotonic functions and the related Hall cument never changes its direction (the gradient 
drift along the contact surface exists even if the electric field is absent and the notation 'Hall 
current' will be used in this case also). At moderate value of a (figure 2(b))  the pattem of the 
energy curves exhibits the avoided-crossings structure. The explanation of this phenomenon 
is as follows. The effective potential along the y axis has the shape of two potential wells 
divided by a S barrier at the contact surface (figure 3). If one neglects underbarrier interaction 
the two energy levels of the states located in different potential wells may cross in the course 
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of changing an external parameter (for instance Px).  However according to the Neumkn- 
Wigner theorem [41 the exact crossing of the energy levels is prohibited in one-dimensional 
problems (or in many-dimensional problems for states having the same symmetry). More 
accurate examination reveals that if two levels approach each other they enter resonance 
and the underbarrier interaction plays a dominant role. The resonant underbarrier interaction 
prevents merging of the levels and results in avoided crossing. It should be pointed out the 
stronger the barrier, the smaller the gap between the levels (see figure 4). In this region 
the wave functions of given states alternate their location in the potential wells when the 
value of the parameter (in our case Px)  passes the avoided crossing. In other words the 
barrier becomes absolutely transparent for both states at this point. This phenomenon is 
well known in the adiabatic approach of atomic-collision theory where avoided crossings of 
adiabatic potential curves cause intensive inelastic transitions between electron states during 
the collision (the so-called Landau-Zener transition r.51). In our case owing to relation (13) 
the avoided crossings of energy levels lead straightforwardly to an oscillatory structure of 
the current. 

Figure 5 shows the results of 
numerical calculation of energy levels and Hall current as a function of external electric 
field. One can see the same avoided-crossing structure of the energy levels as well as 
oscillation in the related current. In principle this means the direction and location of the 
partial current can be governed by changing the strength of the electric field. It should 
be emphasized that the investigated phenomena take place in the vicinity of the contact 
surface. If lyil + cc the parabolic effective potential screens the contact surface and the 
energy levels transform into an equidistant Landau spectrum (see figures 2 and 5). 

Obviously the effects considered here are not only related to the &barrier model but 
should also exist in a more realistic description of the barrier at the contact surface. 

The energy curves E,(E) have similar behaviour. 
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